Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Angiopoietin-related growth factor antagonizes obesity and insulin resistance

Abstract

Angiopoietin-related growth factor (AGF), a member of the angiopoietin-like protein (Angptl) family, is secreted predominantly from the liver into the systemic circulation. Here, we show that most (>80%) of the AGF-deficient mice die at about embryonic day 13, whereas the surviving AGF-deficient mice develop marked obesity, lipid accumulation in skeletal muscle and liver, and insulin resistance accompanied by reduced energy expenditure relative to controls. In parallel, mice with targeted activation of AGF show leanness and increased insulin sensitivity resulting from increased energy expenditure. They are also protected from high-fat diet–induced obesity, insulin resistance and nonadipose tissue steatosis. Hepatic overexpression of AGF by adenoviral transduction, which leads to an approximately 2.5-fold increase in serum AGF concentrations, results in a significant (P < 0.01) body weight loss and increases insulin sensitivity in mice fed a high-fat diet. This study establishes AGF as a new hepatocyte-derived circulating factor that counteracts obesity and related insulin resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Obesity in Angptl6−/− mice on a normal diet.
Figure 2: Metabolic effects of AGF deficiency on a normal diet.
Figure 3: Angptl6 transgenic mice are lean as a result of a loss of WAT mass.
Figure 4: Metabolic and vascular alteration in Angptl6 transgenic mice.
Figure 5: Resistance to high-fat diet-induced obesity and related metabolic disorders seen in Angptl6 transgenic mice.
Figure 6: AGF decreased body weight and increased insulin sensitivity in high-fat fed-induced obese mice.

Similar content being viewed by others

References

  1. Spiegelman, B.M. & Flier, J.S. Obesity and the regulation of energy balance. Cell 104, 531–543 (2001).

    Article  CAS  Google Scholar 

  2. Matsuzawa, Y., Funahashi, T. & Nakamura, T. Molecular mechanism of metabolic syndrome X: Contribution of adipokines adipocyte-derived bioactive substances. Ann. NY Acad. Sci. 832, 146–154 (1999).

    Article  Google Scholar 

  3. Lowell, B.B., & Spiegelman, B.M. Towards a molecular understanding of adaptive thermogenesis. Nature 404, 652–660 (2000).

    Article  CAS  Google Scholar 

  4. Levine, J.A., Eberhardt, N.L. & Jensen, M.D. Role of nonexercise activity thermogenesis in resistance to fat gain in human. Science 283, 212–214 (1999).

    Article  CAS  Google Scholar 

  5. Gale, N.W., & Yancopoulos, G.D. Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, Angiopoietins, and ephrins in vascular development. Genes Dev. 13, 1055–1066 (1999).

    Article  CAS  Google Scholar 

  6. Oike, Y. et al. Angiopoietin-related/like protein (ARPs/Angptls) regulate angiogenesis. Int. J. Hematol 80, 21–28 (2004).

    Article  CAS  Google Scholar 

  7. Oike, Y. et al. Angiopoietin-related growth factor (AGF) promotes epidermal proliferation, remodeling and regeneration. Proc. Natl. Acad. Sci. USA. 100, 9494–9499 (2003).

    Article  CAS  Google Scholar 

  8. Oike, Y. et al. Angiopoietin-related growth factor (AGF) promotes angiogenesis. Blood 103, 3760–3766 (2004).

    Article  CAS  Google Scholar 

  9. Kim, I. et al. Molecular cloning, expression, and characterization of angiopoietin-related protein. J. Biol. Chem. 274, 26523–26528 (1999).

    Article  CAS  Google Scholar 

  10. Camenisch, G. et al. ANGPTL3 stimulates endothelial cell adhesion and migration via Integrin αvβ3 and induces blood vessel formation in vivo. J. Biol. Chem. 277, 17281–17290 (2002).

    Article  CAS  Google Scholar 

  11. Ito, Y. et al. Inhibition of angiogenesis and vascular leakiness by Angiopoietin-related protein 4. Cancer Res. 63, 6651–6657 (2003).

    CAS  Google Scholar 

  12. Yoon, J.C. et al. Peroxisome proliferator-activated receptor gamma target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Mol. Cell Biol. 20, 5343–5349 (2000).

    Article  CAS  Google Scholar 

  13. Kersten, S, et al. Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene. J. Biol. Chem. 275, 28488–28493 (2000).

    Article  CAS  Google Scholar 

  14. Koishi, R, et al. Angptl3 regulates lipid metabolism in mice. Nat. Genet. 30, 151–157 (2002).

    Article  CAS  Google Scholar 

  15. Inaba, T, et al. Angiopoietin-like protein 3 mediates hypertriglyceridemia induced by the liver X receptor. J. Biol. Chem. 278, 21344–21351 (2003).

    Article  CAS  Google Scholar 

  16. Evans, R.M., Barish, G.D. & Wang, Y.X. PPARs and the complex journey to obesity. Nat. Med. 10, 355–361 (2004).

    Article  CAS  Google Scholar 

  17. Spiegelman, B.M. & Flier, J.S. Adipogenesis and obesity: Rounding out the big picture. Cell 87, 377–389 (1996).

    Article  CAS  Google Scholar 

  18. Uysal, K.T., Wiesbrock, S.M., Marino, M.W. & Hotamisligil, G.S. Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature 389, 610–614 (1997).

    Article  CAS  Google Scholar 

  19. Peraldi, P., Xu, M. & Spiegelman, B.M. Thiazolidinediones block tumor necrosis factor-a-induced inhibitor of insulin signaling. J. Clin. Invest. 100, 1863–1869 (1997).

    Article  CAS  Google Scholar 

  20. Yamauchi, T. et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7, 941–946 (2001).

    Article  CAS  Google Scholar 

  21. Berg, A.H., Combs, T.P., Du, X., Brownlee, M. & Scherer, P.E. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat. Med. 7, 647–653 (2001).

    Article  Google Scholar 

  22. Shimomura, I., Hammer, R.E., Ikemoto, S., Brown, M.S. & Goldstein, J.L. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 401, 73–76 (1999).

    Article  CAS  Google Scholar 

  23. Friedman, J.M. Obesity in the new millennium. Nature 404, 632–634 (2000).

    Article  CAS  Google Scholar 

  24. Lowell, B.B., et al. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366, 740–742 (1993).

    Article  CAS  Google Scholar 

  25. Zurlo, F., Larson, K., Bogardus, C. & Ravussin, E. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J. Clin. Invest. 86, 1423–1427 (1990).

    Article  CAS  Google Scholar 

  26. Kamei, Y. et al. PPARγ coactivator 1β/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity. Proc. Natl. Acad. Sci. USA. 100, 12378–12383 (2003).

    Article  CAS  Google Scholar 

  27. Niwa, H., Yamamura, K. & Miyazaki J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–200 (1991).

    Article  CAS  Google Scholar 

  28. Sierra-Honigmann, M.R. et al. Biological action of leptin as an angiogenic factor. Science 281, 1683–1686 (1998).

    Article  CAS  Google Scholar 

  29. Sarmiento, U., et al. Morphologic and molecular changes induced by recombinant human leptin in the white and brown adipose tissues of C57BL/6 mice. Lab. Invest. 77, 243–256 (1997).

    CAS  Google Scholar 

  30. Shimomura, I. et al. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev. 12, 3182–3194 (1998).

    Article  CAS  Google Scholar 

  31. Gavrilova, O. et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J. Clin. Invest. 105, 271–278 (2000).

    Article  CAS  Google Scholar 

  32. Moller, D.E. & Berger, J.P. Role of PPARs in the regulation of obesity-related insulin sensitivity and inflammation. Int. J. Obes. Relat. Metab. Disord. 27, S17–S21 (2003).

    Article  CAS  Google Scholar 

  33. Wu, Z., et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115–124 (1999).

    Article  CAS  Google Scholar 

  34. Puigverger, P. et al. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARγ coactivator-1. Mol. Cell 8, 971–982 (2001).

    Article  Google Scholar 

  35. Puigserver, P. & Spiegelman, B.M. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): Transcriptional coactivator and metabolic regulator. Endocr. Rev. 24, 78–90 (2003).

    Article  CAS  Google Scholar 

  36. Wang, Y.X. et al. Peroxisome-proliferator-activated receptor δ activates fat metabolism to prevent obesity. Cell 113, 159–70 (2003).

    Article  CAS  Google Scholar 

  37. Tanaka, T. et al. Activation of peroxisome proliferator-activated receptor delta induces fatty acid beta-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc. Natl. Acad. Sci. USA. 100, 15924–15929 (2003).

    Article  CAS  Google Scholar 

  38. Dressel, U. et al. The peroxisome proliferatior-activated receptor β/δ agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells. Mol. Endocrinol. 17, 2477–2493 (2003).

    Article  CAS  Google Scholar 

  39. Shulman, G.I., et al. Cellular mechanisms of insulin resistance. J. Clin. Invest. 106, 171–176 (2000).

    Article  CAS  Google Scholar 

  40. Petersen, K.F. et al. Mitochondrial dysfunction in the elderly: Possible role in insulin resistance. Science 300, 1140–1142 (2003).

    Article  CAS  Google Scholar 

  41. Barger, P.M., Browning, A.C., Garner, A.N. & Kelly, D.P. p38 mitogen-activated protein kinase activates peroxisome proliferator-activated receptor α: a potential role in the cardiac metabolic stress response. J. Biol. Chem. 276, 44495–44501 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Fukushima for her assistance with the experiments. This work was supported by Grants-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science and Culture of Japan, by the Yamanouchi Foundation for Research on Metabolic Disorders and by the Mochida Memorial Foundation for Medical and Pharmaceutical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Oike.

Ethics declarations

Competing interests

The research concerned was performed under the Collaborative Research Agreement with Yamanouchi Pharmaceutical Co., Ltd.

Supplementary information

Supplementary Fig. 1

Gene targeting of the AGF locus. (PDF 58 kb)

Supplementary Fig. 2

Generation of AGF-transgenic mice. (PDF 73 kb)

Supplementary Fig. 3

AGF-stimulated intracellular signaling in C2C12 myocytes. (PDF 70 kb)

Supplementary Fig. 4

Impaired blood flow perfusion in AGF−/− females. (PDF 33 kb)

Supplementary Fig. 5

Increased insulin sensitivity in K14-AGF-transgenic mice7,8 despite a loss of WAT mass. (PDF 32 kb)

Supplementary Table 1 (PDF 15 kb)

Supplementary Methods (PDF 40 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oike, Y., Akao, M., Yasunaga, K. et al. Angiopoietin-related growth factor antagonizes obesity and insulin resistance. Nat Med 11, 400–408 (2005). https://doi.org/10.1038/nm1214

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1214

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing